Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Chin Chem Lett ; 2022 May 16.
Article in English | MEDLINE | ID: covidwho-2239652

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is not only an enzyme but also a functional receptor on cell membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the activity of ACE2 in single living cell is firstly determined using a nanokit coupled electrospray ionization mass spectrometry (nanokit-ESI-MS). Upon the insertion of a micro-capillary into the living hACE2-CHO cell and the electrochemical sorting of the cytosol, the target ACE2 enzyme hydrolyses angiotensin II inside the capillary to generate angiotensin 1-7. After the electrospray of the mixture at the tip of the capillary, the product is differentiated from the substrate in molecular weight to achieve the detection of ACE2 activity in single cells. The further measurement illustrates that the inflammatory state of cells does not lead to the significant change of ACE2 catalytic activity, which elucidates the relationship between intracellular ACE2 activity and inflammation at single cell level. The established strategy will provide a specific analytical method for further studying the role of ACE2 in the process of virus infection, and extend the application of nanokit based single cell analysis.

2.
Microchemical Journal ; 186:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2235237

ABSTRACT

[Display omitted] • Immunohistochemistry with magnetic core nanoparticles to isolate viruses. • The use of MALDI-MS for rapid virus detection is explained in detail. • The use of ESI-MS/MS to pinpoint host-patient crosstalk is explained in detail. • The absolute quantitative MS is explained for large-scale protein quantitation. The capabilities of bioanalytical mass spectrometry to (i) detect and differentiate viruses at the peptide level whilst maintaining high sample throughput and (ii) to provide diagnosis and prognosis for infected patients are presented as a tutorial in this work to aid analytical chemists and physicians to gain insights into the possibilities offered by current high-resolution mass spectrometry technology and bioinformatics. From (i) sampling to sample treatment;(ii) Matrix-Assisted Laser Desorption Ionization- to Electrospray Ionization -based mass spectrometry;and (iii) from clustering to peptide sequencing;a detailed step-by-step guide is provided and exemplified using SARS-CoV-2 Spike Y839 variant and the variant of concern SARS-CoV-2 Alpha (B.1.1.7 lineage), Influenza B, and Influenza A subtypes AH1N1pdm09 and AH3N2. [ FROM AUTHOR]

3.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041577

ABSTRACT

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

4.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

SELECTION OF CITATIONS
SEARCH DETAIL